
In! J. Heor Mass Transfer. Vol. 36, No. 12, pp. 3153-3155, 1993 0017-9310193 36.00+0.00 
Printed in Great Britain 0 1993 Pergamon Press Ltd 

TECHNICAL NOTES 

High Peclet number heat transfer from a droplet suspended in an electric field : 

interior problem 

D. L. R. OLIVER and K. J. DE WITT 

College of Engineering, University of Toledo, Toledo, Ohio 43606, U.S.A. 

(Received 5 May 1992 and injnalform 25 November 1992) 

INTRODUCTION 

IN 1966 G. 1. Taylor [l] investigated the flow field near a 
dielectric droplet suspended in a second dielectric fluid 
exposed to a uniform electric field. He demonstrated both 
theoretically and experimentally that the droplet will have 
an interior flow pattern as illustrated in Fig. 1. 

There are several modes of resistance to heat transfer from 
droplets, and Clift et al. [2] present a well written overview 
of the various modes governing the heat and mass transfer 
from droplets. The special case investigated in the present 
work is when the bulk of the resistance to transfer is in the 
droplet itself: the interior problem. More specifically, this 
work will investigate high Peclet number heat transfer from 
such droplets. 

In the past few years, two works appeared which numeri- 
cally investigated transfer rates for the interior of a droplet 
suspended in an electric field : Oliver er al. [3] and Manohar 
and Iyengar [4]. These works employed AD1 (alternating 
direction implicit) methods to integrate the transport equa- 
tion Oliver ef al. predicted that as the Peclet number 
increased, the Nusselt number would not exceed an upper 
boundary of about 30. Both of these investigations limited 
the range of Peclet numbers to 2000 or less. Thus, it has not 
been demonstrated (only conjectured) that the upper bound 
for the Nusselt number is in fact near 30 for very high Peclet 
numbers. 

This investigation is inspired by the classic study of Kronig 
and Brink [S] who investigated high Peclet number mass 
transfer in translating droplets. They assumed that for high 
Peclet numbers, the concentration contours inside the drop- 
let would be a function of time and the stream function only. 
With this assumption, they predicted an upper bound for the 
steady-state Nusselt number of 17.9. This work attempts to 
investigate heat transfer from a droplet suspended in an 
electric field using many of the same assumptions used by 
Kronig and Brink in their investigation of mass transfer from 
a translating droplet. 

ANALYSIS 

As the Peclet number increases, the temperature contours 
are assumed to correspond to the stream function values. 
That is 

F<mc T(r, ($7) = T(Y, 7) (1) 

where the stream function Y is given by 

Y(r,@ = (r’-r5)sin20cos0 (2) 

and r is the dimensionless time : 7 = t D/a*. 
With this assumption, heat transfer is limited to con- 

duction orthogonal to the stream function contours. Thus, 

the energy equation may be. shown to be of the form 

where 

or 

and 

a(Y) = rsin6de 

cc(Y) = Vr* sin’0 de, 

or B(Y) = 
ds 
v 

(3) 

The partial derivative, aY/&z, is with respect to the direction 
normal to the stream function contour and in towards the 
vortex center. The function V is the dimensionless speed of 
a fluid particle and is given by 

ay l 
V=Xrsin 

The above integrations are taken around the closed curve 
given by a stream function contour Y and are evaluated 
numerically with limiting cases of 

r 

FIG. 1. Flow patterns (arrows indicate positive flow direc- 
tions) for a stationary droplet in an electric field [l]. 
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NOMENCLATURE 

droplet radius 
(1; thermal diffusivity 
.f{ut) see equation (8) 
k thermal conductivity 
NU Nusselt number, Q/272&T, 
Nu,, asymptotic Nusselt number with time 
Q heat transfer rate from droplet 
r djmensionless radial coordinate 
t time 
T temperature scaled by surface temperature 

r 
Ih bulk temperature, equation (7) 
1 dimensionless speed, equation (3). 

Greek symbols 
cc(Y), b(Y) see equation (3) 
0 tangential coordinate 

;I 
dimensionless time, tD/a’ 
dimensionless stream function 

Y”,,, value of stream function at the vortex 
center. 

$$tx a(Y) = 0. limit j?(Y) = Jox. Table 1. Convergence to I&, 
*+p,, 2 ~.__ _____- 

The boundary conditions imposed on T(Y, 5) are 
AY Grid mesh Integration points NM,, 

- 

VY,,,, 5) is finite (temperature at vortex center) (4) 0.001789 40 29.925 

T(Y = 0,~) = 0 (exterior boundary condition) (5) 
0.~0894 80 29.849 
0.000447 160 29.817 

and at 0.000224 320 29.790 
0.000112 640 29.789 

Y = 0 : $ = t T&b (conservation of energy), 
______-_ 

(6) 

The quantity Tb is the bulk temperature of the droplet and 
may be obtained with the following relation 

The maximum value for Y is attained at the vortex center 
(which is located at r’ = 3/S and sin’0 = 2/3) 

In addition to the previous assumptions, for large times the 
dimensionless temperature profile is assumed to behave in a 
self-similar manner with 

&nit T(Y. 5) =.f(Y) exp (-A+. (8) 

With the above assumptions, the problem reduces to finding 
the unknown functionf(Y) and the decay constant 1. Equa- 
tion (3) thus becomes 

& a(Y) g +nppIy= 0. ( > 
The boundary conditions imposed onf(Y) are 

.i‘(Y = 0) = 0 

at 

(IO) 

y = 0: 4f = *2A mdx 
s dW 7 0 .fPWW> d’i’ (11) 

and 

f(Y = W,,,) = I. (12) 

Equation (9) has been numerically solved to find the first 
positive value of A for which equations (10)~(12) were true. 
The asymptotic Nusselt number may be found by the relation 

Nu,~ = @. (13) 

Second order finite difference methods were used to 
approximate equation (9). and the trapezoidal rule was used 
to evaluate the integrals. To check the convergence of the 
predicted asymptotic Nusselt number, both the size of AY 
and the number of integration points (per closed stream 
function) used to evaluate tl(Y) and j?(Y) were varied. The 
resulting predicted asymptotic Nussett numbers are reported 
in Tabie 1. 

To check the accuracy of the present procedure, it was 
applied to the problem of a droplet translating due to gravity. 
For this case the stream function is defined by 

Y(r.0) = (r’-r4)sinZH, with Y’,,, = 0.25. (14) 

Conservation of energy is imposed on the entire droplet by 
modifying equation (II) such that at the droplet surface 
(Y = 0) 

with limit p(Y) = $_ (15) 

With the above changes, the present model predicts an 
asymptotic Nusselt number of 17.903 (with AY = 0.000391 
and 640 integration points). This compares with a value of 
17.90 based on the work of Kronig and Brink. 

RESULTS 

The predicted asymptotic Nusselt number was (as 
expected) found to converge with an increasingly fine grid 
mesh and more integration points. In Table I are reported 
the predicted asymptotic Nusselt numbers as a function of 
the grid mesh size and the number of integration points. 

Based on the previous transient work (refs. [3] and [4]), 
one would expect the asymptotic Nusselt number to be near 
30. Based on the above analysis it may be concluded that the 
limit (as the Peclet number increases) for the asymptotic 
(steady-state) Nusselt number for a droplet suspended in an 
electric field is 
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INTRODUCTION 

THE HEAT transfer by conduction through layers of uniform 
thickness surrounding a planar wall, a sphere, or a circular 
cylinder can be found from simple solutions to the one- 
dimensional conduction equation. Simple exact solutions are 
not available, however, when the uniform layer surrounds 
other body shapes. Yet in practice, it is often desirable to 
predict the heat transfer through such layers-for example, 
through layers of insulation applied to diverse objects, such 
as ducts, which come in a variety of cross-sectional shapes. 
Calculating natural convection heat transfer by the ‘con- 
duction layer method’ (Raithby and Hollands [l]) provides 
yet another circumstance in which one needs to predict heat 
conducted through a uniform layer. The ‘conduction layer 
method’ provides its answer in terms of the thickness of a 
hypothetical stagnant fluid layer offering the same resistance 
to heat transfer as the actual boundary layer; finding the 
heat transfer then requires solving for the heat conducted 
through this layer. 

Finding the heat transfer reduces to finding the layer’s 
thermal resistance R, or equivalently the shape factor, S, 
where 

where Q is the heat transfer, AT is the applied temperature 
difference, and k is the thermal conductivity of the layer 
material. The present paper derives a simple approximate 
equation for S for cases in which the flow of heat is two- 
dimensional. The equation gives an upper bound for the 
exact value of S. The closeness of the upper bound to the 
exact solution and the extreme simplicity of the result make 
this approximate solution of practical interest. 

Previous related works (Smith et al. [2], Balcerzak and 
Rayner [3], Lewis [4], Dungan [5], Laura and Susemihl [6], 
Laura and Sanchez Sarmiento 17, 141 and Simeza and Yov- 
anovich [8]) all considered layers of non-uniform thickness 
and therefore do not strictly apply to the uniform layer 
problem. 

To better define the problem, we first note that in the cross- 
sectional view (Fig. l(a)), the layer lies between two closed 
curves : an inner curve Ci, and an outer curve C,, which is 
spaced uniformly at perpendicular distance B from C,. Thus 
curve C, is defined as the locus of points traced by con- 
structing outward normals to C, and measuring out distance 

B along the normal. Sharp vertices in Ci that occur, for 
example, when C, is a polygon (Fig. l(b)), would appear to 
leave C, undefined by this construction process, over the 
region near the vertex. But if we consider the vertex as a 
limiting case of a small circular arc near the vertex, we find 
that, C,, is simply filled in by an arc of radius B centered at 
the vertex (Fig. 1 (c)). 

If B is sufficiently large, and C, is concave over parts of its 
length, the curve C, may be found to be self-intersecting 
(Fig. l(d)). This can happen only on concave regions of C, ; 
it occurs if a local radius of curvature is less than B. (Vertices 
having internal angles, 4, greater than R will always produce 
self-intersection of C,, regardless of B.) If C, self-intersects, 
one can question whether it is possible to actually produce 
a uniform layer surrounding the cylinder. Thus we exclude 
from the purview of the paper those combinations of B and 
C, that produce self-intersection of C,. 

The present paper’s derivation of an equation for S draws 
upon the observation of Elrod [9] that the value of S will be 
no greater than tnat derived when the shapes of the isotherms 
are arbitrarily assumed. The closer the assumed shapes are 
to those of the true isotherms, the more accurate will be the 
derived value of S. It happens that one particular set of 
assumed shapes for the isotherms satisfies many of the 
requirements for the true isotherm shapes and yields a very 
simple, general-purpose expression for the corresponding 
derived values of S. These particular assumed shapes are 
curves constructed identically to those used to construct C,, 
but spaced arbitrary distance u, rather than B, from C,, with 
0 < u < E. In this paper, the equation for S derived from 
this model is tested against exact results for some special 
cases chosen to be the most demanding on the model. 

ANALYSIS 

Properties of curves C, 
Let a curve constructed at constant perpendicular distance 

u from C, be denoted by C,. We first show that 

P, = p,+2nu (2) 

where P, and P, are the lengths (or perimeters) of C, and C,, 
respectively. We also show that any normal to C,, when 
extended to C, as a straight line, meets C. at right angles. To 
derive these results for a smooth curve, we let r, and r, 
represent the position vectors of various points on curves C. 
and C,, respectively, as shown in Fig. 2. Then 


